STERIC COURSE OF THE HISTIDASE REACTION

J.RÉTEY, H.FIERZ, W.P.ZEYLEMAKER

Organisch-chemisches Laboratorium, Eidgenössische Technische Hochschule, Universitätstrasse 6, 8006 Zürich and Laboratory of Biochemistry, B.C.P. Jansen Institute,
University of Amsterdam, Plantage Muidergracht 12, Amsterdam, The Netherlands

Received 18 December 1969

1. Introduction

Histidase (histidine ammonia lyase, E.C. 4.3.1.3) catalyses the practically irreversible* conversion of L-histidine to urocanic acid and ammonia according to equ. (1). In the course of the reaction one of the heterotopic [1] hydrogen atoms at C-3 of L-histidine is

slowly exchanged with the protons of water and this hydrogen is lost in the elimination reaction [2]. It will subsequently be shown that the H_R atom [3] of C-3 is involved both in the exchange and in the overall reaction and hence the elimination of ammonia from L-histidine occurs in a "trans" manner.

2. Methods

Enzymically labelled L- 3 H-histidine was prepared essentially as described in [2]. A few μ moles of the tritiated histidine were freeze-dried and diluted with 1.5 g of unlabelled L-histidine hydrochloride. After chromatography on Dowex-50 (eluent 4 N HBr) 2 g

* Williams and Hiroms [11] recently showed that on very long incubation histidase catalyses the conversion of urocanate and ammonia to L-histidine.

crystalline L-histidine dihydrobromide were obtained (2280 cpm/mmole), the radioactivity of which remained unchanged on repeated chromatography.

2.1. Degradation of $L^{-3}H$ -histidine to succinic acid

The following procedure was used: 580 mg L-3Hhistidine dihydrobromide were dissolved in 4 ml water and 0.87 ml HBr (48%). A solution of 125 mg NaNO₂ in 1.5 ml water was slowly added at 0°C and the reaction mixture stirred at 20°C for 2 hr. After addition of 100 mg PtO2, the mixture was hydrogenated at room temperature until the uptake of H2 ceased. A total of 43 ml H₂ were consumed. The catalyst was subsequently removed and the solution adjusted to pH 7 with 1 N KOH. A saturated aqueous solution of 1 g KMnO₄ was added dropwise to the mixture at 60°C. After 1½ hr stirring another portion of 1 g KMnO₄ was added and the reaction allowed to proceed for a further 1½ hr. In order to reduce MnVII and MnIV to $\mathrm{Mn^{II}}$, 15 ml of 38% $\mathrm{NaHSO_3}$ were introduced to the solution. After acidification with 2 N H₂SO₄, the succinic acid was extracted continuosly with ether and purified by chromatography on Dowex-1 and several recrystallisations from water as described in [4]. The yield after 3 recrystallisations was 31 mg. The same degradation procedure with unlabelled L-histidine dihydrobromide, and using ³H-H₂O as solvent, resulted in practically no incorporation of tritium into the succinic acid.

2.2. Determination of chirality of ³H-succinic acid

The chirality determination was carried out as described in [5]. Reference (R)-, (S)- and (RS)-³H-succinate samples were oxidised to 70% conversion with the same preparation of soluble succinate dehydrogen-

ase. Succinic and fumaric acid samples were separated and purified as described in [4]. The results of the radioactivity measurements are summarised in the table.

3. Results and discussion

A detailed study of the mechanism of the histidase reaction has revealed [2] that in addition to the overall conversion of L-histidine to urocanic acid, the following two partial reactions are catalysed by the enzyme; i) dismutation bettween L-histidine and ¹⁴Curocanic acid and ii) exchange of hydrogen atoms between L-histidine and water. The tritium atom introduced to L-histidine by the latter process was localised in the methylene group by appropriate degradation procedures [2]. Furthermore, enzymically tritiated Lhistidine was converted by the enzyme into tritium free urocanic acid. This implies that only one of the diastereotopic H atoms at C-3 of L-histidine is exchangeable and that the same hydrogen is lost in the elimination reaction. In the present work, it is shown that only the H_R atom of L-histidine (equ. 1) is reactive both in the exchange and in the overall reaction. This is achieved by reductive elimination of the amino group of enzymically tritiated L-histidine and subsequent degradation of the imidazolyl propionic acid to ³H-succinate (equ. 2). The latter is shown to possess the (R)-configuration by a method [5] based on the

difference in isotope effects for the enzymic removal of tritium from positions corresponding to H_R and H_S in succinate (see formula 1). Thus on partial oxida-

tion of the chiral ³H-succinic acids by succinate dehydrogenase the enrichment of tritium in the starting material is faster when the substrate has the (R)-configuration than when it has the (S)-configuration (cf. table). In spite of recent work [2, 6] the precise mechanism of the histidase reaction is still unknown. The present results throw light on its stereochemistry by showing that it is a trans elimination process. Other enzymecatalysed reactions involving the elimination of ammonia, e.g. those catalysed by aspartase [7] and

Table

Substrate	Radioactivity				
	Starting succinate cpm/mmole	Succinate recovered		Fumarate produced	
		cpm/mmole	ratio compared with substrate (%)	cpm/mmole	ratio compared with substrate (%)
³ H-succinate from L- ³ H-histidine	945 ± 30	1630 ± 50	173 ± 10	574 ± 15	58 ± 5
(R)- ³ H-succinate (reference)	1506 ± 15	2535 ± 15	168 ± 8	785 ± 15	52 ± 5
(S)-3H-succinate (reference)	1663 ± 15	2087 ± 15	125 ± 5	932 ± 10	56 ± 5
(RS)-3H-succinate (reference)	1581 ± 15	2321 ± 15	147 ± 7	922 ± 10	58 ± 5

 β -methylaspartase [8-10], follow the same steric course although they differ from the histidase reaction in other respects.

Acknowledgement

The technical assistence of Mr. B.Vogt is gratefully acknowledged.

Addendum

After the preparation of this manuscript we received a preprint of a paper by I.L.Givot, T.A.Smith and R.H. Abeles in which they also show that the histidase reaction involves a "trans" elimination.

References

[1] K.Mislow and M.Raban, Topics in stereochemistry, Vol. 1, eds. Allinger and Eliel (1967) p.1.

- [2] A.Peterkofsky, J. Biol. Chem. 237 (1962) 787.
- [3] K.R.Hanson, J. Am. Chem. Soc. 88 (1966) 2731.
- [4] J.Rétey, J.Seibl, D.Arigoni, J.W.Cornforth, G.Ryback, W.P.Zeylemaker and C.Veeger, Nature 216 (1967) 1320.
- [5] W.P.Zeylemaker, C.Veeger, F.Kunz, J.Rétey and D.Arigoni, Chimia (in press).
- [6] T.A.Smith, F.H.Cordelle and R.H.Abeles, Arch. Biochem. Biophys. 120 (1967) 724.
- [7] O.Gawron and T.P.Fondy, J. Am. Chem. Soc. 81 (1959) 6333.
- [8] H.A.Barker, R.D.Smyth, E.J.Wawszkiewicz, M.N.Lee and R.M.Wilson, Arch. Biochem. Biophys. 78 (1958) 468.
- [9] H.J.Bright, L.L.Ingraham and R.E.Lundin, Biochim. Biophys. Acta 81 (1964) 576.
- [10] M.Sprecher and D.B.Sprinson, J. Biol. Chem. 241 (1966) 868.
- [11] V.R.Williams and J.M.Hiroms, Biochim. Biophys. Acta 139 (1967) 214.